Jiang, G. M.*; Wang, K. F.; Li, J. Y.; Fu, W. Y.; Zhang, Z. Y.; Johnson, G.; Lv, X.S.; Zhang, Y.X.; Zhang, S.; Dong, F. Electrocatalytic hydrodechlorination of 2,4-dichlorophenol over palladium nanoparticles and its pH-mediated tug-of-war with hydrogen evolution. Chem. Eng. J 2018, 348 (15), 26-34. https://www.sciencedirect.com/science/article/pii/S1385894718307460
Fu, W. Y.; Wang, K. F.; Lv, X. S.; Fu, H. L.*; Dong, X. A.; Chen, L.; Zhang, X. M.; Jiang, G. M.* Palladium nanoparticles assembled on titanium nitride for enhanced electrochemical hydrodechlorination of 2,4-dichlorophenol in water. Chinese J. Catal. 2018, 39, 693-700. http://www.cjcatal.org/CN/10.1016/S1872-2067(17)62937-1
Jiang, G. M.*; Lan, M. N.; Zhang, Z. Y.; Lv, X. S.; Lou, Z. M.; Xu, X. H.; Dong, F.; Zhang, S.* Identification of active hydrogen species on palladium nanoparticles for an enhanced electrocatalytic hydrodechlorination of 2,4-dichlorophenol in water. Environ. Sci. Technol. 2017, 51 (13), 7599-7605.http://pubs.acs.org/doi/abs/10.1021/acs.est.7b01128
Jiang, G. M.; Huang, Y. X.; Zhang, S.; Zhu, H. Y.; Wu, Z. B.*; Sun, S. H.* Controlled synthesis of Au-Fe heterodimer nanoparticles and their conversion into Au-Fe3O4 heterostructured nanoparticles. Nanoscale 2016, 8, 17947-17952. http://pubs.rsc.org/-/content/articlelanding/2016/nr/c6nr06395k/unauth#!divAbstract
Jiang, G. M.*; Li, X. W.; Lv, X. S.; Chen, L. Core/shell FePd/Pd catalyst with a superior activity to Pt in oxygen reduction reaction. Sci. Bull. 2016, 2016, 61(16), 1248-1254. http://www.sciencedirect.com/science/article/pii/S2095927316300500
Jiang, G. M.; Zhu, H. Y.*; Zhang, X.; Shen, B.; Wu, L. H.; Zhang, S.; Lu, G.; Wu, Z. B.*; Sun, S. H.* Core/Shell Face-Centered Tetragonal FePd/Pd Nanoparticles as an Efficient Non-Pt Catalyst for the Oxygen Reduction Reaction. ACS Nano 2015, 9 (11), 11014-11022. http://pubs.acs.org/doi/abs/10.1021/acsnano.5b04361
Zhang, S.#; Jiang, G. M. #; Filsinger, G. T.; Wu, L.; Zhu, H.; Lee, J.; Wu, Z.; Sun, S.* Halide ion-mediated growth of single crystalline Fe nanoparticles. Nanoscale 2014, 6, 4852-6. (# Equal contribution) http://pubs.rsc.org/en/content/articlelanding/2014/nr/c4nr00193a/unauth#!divAbstract
Jiang, G. M.*; Fu, W. Y.; Wang, Y. Z.; Liu, X. Y.; Zhang, Y. X.; Dong, F.; Zhang, Z. Y.; Zhang, X. M.; Huang, Y. M.*; Zhang, S.; Lv, X. S.* Calcium sulfate hemihydrate nanowires: one robust material in separation of water from water-in-oil emulsion. Environ. Sci. Technol.2017, 51 (18), 10519–10525. http://pubs.acs.org/doi/abs/10.1021/acs.est.7b02901
Fu, H. L.; Huang, J. S.; Yin, L. W.; Yu, J.; Lou, W. B.; Jiang, G. M.* Retarding effect of impurities on the transformation kinetics of FGD gypsum to α-calcium sulfate hemihydrate under atmospheric and hydrothermal conditions. Fuel 2017, 203 (1), 445-451. http://www.sciencedirect.com/science/article/pii/S0016236117305690
Jiang, G. M.; Li, J. X.; Nie, Y. L.; Zhang, S.; Dong, F.; Guan, B. H.*; Lv, X. S.* Immobilizing water into crystal lattice of calcium sulfate for its separation from water-in-oil emulsion. Environ. Sci. Technol. 2016, 50 (14), 7650–7657. http://pubs.acs.org/doi/abs/10.1021/acs.est.6b01152
Jiang, G. M.; Wang, H.; Chen, Q. S.; Zhang, X. M.; Wu, Z. B.; Guan, B. H.* Preparation of alpha-calcium sulfate hemihydrate from FGD gypsum in chloride-free Ca(NO3)2 solution under mild conditions. Fuel 2016, 174 (15), 235-241. http://www.sciencedirect.com/science/article/pii/S0016236116000946
Jiang, G. M.; Chen, Q. S.; Wu, Z. B.; Guan, B. H.* Controlled synthesis of monodisperse alpha-calcium sulfate hemihydrate nanoellipsoids with a porous structure. Phys. Chem. Chem. Phys. 2015, 17, 11509-15. http://pubs.rsc.org/-/content/articlelanding/2015/cp/c5cp00804b/unauth#!divAbstract
Jiang, G. M.; Fu, H. L.; Savino, K.; Qian, J. J.; Wu, Z. B.; Guan, B. H.* Nonlattice cation-SO42- ion pairs in calcium sulfate hemihydrate nucleation. Cryst. Growth Des. 2013, 13(11), 5128-5134. http://pubs.acs.org/doi/abs/10.1021/cg401361u
Jiang, G. M.; Mao, J. W.; Fu, H. L.; Zhou, X.; Guan, B. H.* Insight into metastable lifetime of alpha-calcium sulfate hemihydrate in CaCl2 solution. J. Am. Ceram. Soc. 2013, 96, 3265-71. http://onlinelibrary.wiley.com/doi/10.1111/jace.12451/full
He, W. J.; Sun, Y. J.; Jiang, G. M.;* Huang, H. W.; Zhang, X. M.; Dong, F.* Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: photocatalysis mechanism and reaction pathway. Appl. Catal. B-Environ. 2018, Accepted. https://www.sciencedirect.com/science/article/pii/S0926337318302467
Li, X. W.; Zhang, W. D.; Cui, W.; Sun, Y. J.; Jiang, G. M.*; Zhang, Y. X.; Huang, H. W.; Dong, F.* Bismuth spheres assembled on graphene oxide: Directional charge transfer enhances plasmonic photocatalysis and in situ DRIFTS studies. Appl. Catal. B: Environ.2018, 221 (15), 482-489. http://www.sciencedirect.com/science/article/pii/S0926337317308858
Jiang, G. M.; Li, X. W.; Lan, M. N.; Shen, T.; Lv, X. S.; Dong, F.*; Zhang, S.* Monodisperse bismuth nanoparticles decorated graphitic carbon nitride: enhanced visible-light-response photocatalytic NO removal and reaction pathway. Appl. Catal. B: Environ. 2017, 205 (15), 532-540. http://www.sciencedirect.com/science/article/pii/S0926337317300085
Guan, B. H.*; Jiang, G. M.; Wu, Z. B.; Mao, J. W.; Kong, B. Preparation of alpha-Calcium Sulfate Hemihydrate from Calcium Sulfate Dihydrate in Methanol-Water Solution under Mild Conditions. J. Am. Ceram. Soc. 2011, 94, 3261-6.
Guan, B. H.*; Jiang, G. M.; Fu, H. L.; Yang, L.; Wu, Z. B., Thermodynamic preparation window of alpha calcium sulfate hemihydrate from calcium sulfate dihydrate in non- electrolyte glycerol-water solution under mild conditions. Ind.
Eng.
Chem. Res. 2011, 50, 13561-7.
Chen, Q. S.; Jiang, G. M.; Jia, C. Y.; Wang, H.; Guan, B. H.* A facile method to control the structure and morphology of α-calcium sulfate hemihydrates. CrystEngComm 2015, Online.
Fu, H. L.; Jiang, G. M.; Wang, H.; Wu, Z. B.; Guan, B. H.* Solution-mediated transformation kinetics of calcium sulfate dihydrate to alpha-calcium sulfate hemihydrate in CaCl2 solutions at elevated temperature. Ind.
Eng.
Chem. Res. 2013, 52, 17134-9.
Mao, J. W.; Jiang, G. M.; Chen, Q. S.; Guan, B. H.* Influences of citric acid on the metastability of α-calcium sulfate hemihydrate in CaCl2 solution. Colloid Surface A 2014, 443, 265-271.
Zhang, S.; Zhang, X.; Jiang, G. M.; Zhu, H.; Guo, S.; Su, D.; Lu, G.; Sun, S.* Tuning nanoparticle structure and surface strain for catalysis optimization. J. Am. Chem. Soc. 2014, 136 (21), 7734-9.
Zhu, H.Y.; Zhang, S.; Su, D.; Jiang, G. M. Sun, S. H.* Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction. Small, 2015, 11, 3545-9.
Dong, F.*; Xiao, X.; Jiang, G. M.; Zhang, Y. X.; Cui, W.; Ma, J. Z. Surface oxygen-vacancy induced photocatalytic activity of La(OH)3 nanorods prepared by a fast and scalable method. Phys. Chem. Chem. Phys. 2015, 17, 16058-66.
Fu, H. L.; Guan, B. H.*; Jiang, G. M.; Yates, M. Z.; Wu, Z. B. Effect of Supersaturation on Competitive Nucleation of CaSO4Phases in a Concentrated CaCl2Solution. Cryst. Growth Des. 2012, 12 (3), 1388-1394.
Lv, X. S.; Xu, J.; Jiang, G. M.; Tang, J.; Xu, X. H.* Highly active nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions. J. Colloid Interf. Sci. 2012, 369, 460-469.
Lv, X. S.; Xu, J.; Jiang, G. M.; Xu, X. H.* Removal of chromium (VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 2011, 85(7), 1204-1209.